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HyGCN: A GCN Accelerator with Hybrid Architecture

ABSTRACT
Inspired by the broad use of graph data and powerful learning
capability of neural networks, graph convolutional neural net-
works (GCNs) are proposed to analyze graph datasets using
neural networks. The convolutional layers occupy the ma-
jor execution time of GCNs through two primary execution
phases: Aggregation and Combination. The former behaves
as graph processing while the latter acts more like the neural
networks. In order to identify the bottleneck when perform-
ing GCNs, we conduct quantitative characterizations that
evidence the inefficiency in the conventional architectures.
This is caused by the distinct, even opposed, memory access
and computation patterns of the two phases, as well as the
serialized processing of them.

To address these issues, we propose the concept of GCN ac-
celerator and implement it using a hybrid architecture. First,
we build Edge- and MVM (matrix vector multiplication)-
centric programming models for the dynamic & irregular
Aggregation phase and the static & intensive Combination
phases, respectively, to achieve the hardware transparency for
programmers. Then, we design HyGCN with two efficient
processing engines to respectively accelerate the two phases.
In Aggregation Engine, besides the edge parallelism achieved
by SIMD cores, we introduce the interval-shard graph parti-
tion to increase data reuse and the window sliding-shrinking
method to decrease redundant accesses. In Combination
Engine, we build multigranular systolic arrays to perform
MVMs that can flexibly be used in an independent way for
lower latency or in a joint way for lower energy. At last, we
further optimize the overall system via orchestrating the inter-
engine pipeline and off-chip memory access coordination.
Through extensive evaluation experiments, our work achieves
significant improvements compared with the state-of-the-art
software framework running on Intel Xeon CPU. We also
analyze the optimization techniques and design space to give
more insights for future researches on GCN hardwares.

1. INTRODUCTION
Although deep learning has made a great success on Eu-

clidean data (e.g. images), there is a boom of tasks required
to analyze large graph datasets where the data are gener-
ated from the non-Euclidean domain [33, 40]. These graph-
encoded data can capture abundant and complex relationships
among billions of elements, such as friendship, topology and
interaction. Typical graphs include social networks [19, 30],
physical systems [6, 13], biological networks [14, 15], knowl-
edge graphs [5, 17, 31], and so forth.

Inspired by the powerful learning capability of neural net-
works, graph neural networks (GNNs) are proposed as an
effective category of models to represent and process graph
data [33, 39, 40, 41]. GNNs convert the graph data into a low
dimensional space while keeping both the structural and prop-
erty information to the maximum extent, and then construct

a neural network for the consequent training and inference.
Recently, they attract substantial efforts from both the indus-
trial and academic community [3, 13, 18, 20, 27, 37, 38] to
solve problems including node classification [24], link predic-
tion [13,15], graph clustering [38], recommendation [12], and
many others. Among existing GNN models, graph convolu-
tional neural networks (GCNs) are the most broadly studied,
which have great potential to extend current deep learning
scope [26]. As a result, GCNs gradually become a new
workload family member in data-centers, such as Euler of
Alibaba [3], and Pytorch Biggraph of Facebook [27].

The convolutional layers occupy the major execution time
of GCNs through two primary execution phases: Aggrega-
tion and Combination [14, 35, 41]. In the Aggregation phase,
the feature vectors of its source neighbors are aggregated to
one feature vector, which maintains most graph processing
behaviors; while the Combination phase transforms the fea-
ture vector of each vertex to a new one using a multi-layered
perceptron (MLP), which acts more like the neural networks.
It seems that GCNs appear as a perfect hybrid paradigm that
enables the usage of the neural network methodology for
analyzing the graph data, however, the efficient processing of
GCNs naturally suffers from huge challenges due to this fu-
sion. The underlying reason is that the graph processing and
neural network execution have distinct, even almost opposed,
memory and computation patterns.

The Aggregation phase heavily relies on the graph struc-
ture that is inherently random and sparse. The processing of
each vertex requires features from all its source neighbours.
Unfortunately, the amount and location of these source neigh-
bours vary significantly among vertices. This induces plenty
of dynamic and irregular accesses and computations, and thus
the data cannot be well shared to utilize the cache hierarchy.
On the contrary, the Combination phase performs a static and
regular transformation on each vertex, which is friendly for
the memory subsystem. However, the computation of matrix-
vector multiplications (MVMs) is very intensive. Moreover,
since the parameters (e.g. weights and biases) for each vertex
are fully shared in this phase, the data copy and synchro-
nization between threads cause inefficient waits. To sum up,
the Aggregation phase requires more design efforts on the
memory optimization to address the irregularity for better
cache utilization while the Combination phase needs a better
parallelism and efficiency to perform the intensive MVM
computations and reduce the wait time.

Conventional general-purpose processors cannot perform
GCNs with high performance. First, although modern com-
puter architectures can employ complex caching techniques
to offset the processor-memory disparity, one of the required
premises is the regular access pattern. Unfortunately, the
abundant dynamic and irregular accesses in the Aggrega-
tion phase ruin the memory locality and the predictability of
memory accesses [11]. Consequently, caches and prefetchers
suffer from a low hit rate, leading to many costly DRAM



accesses with high latency and energy [28]. Second, although
modern computer architectures can leverage the out-of-order
(OoO) execution mechanism to exploit parallelism, the mem-
ory bound of Aggregation phase makes OoO in vain and the
deterministic execution of Combination phase eliminates the
demand for OoO. Furthermore, due to the parameter sharing
between vertices in the Combination phase, the data copy and
synchronization between threads increase the wait time. At
last, besides these intra-phase inefficiencies, the two phases
are currently performed in serial, which further degrades the
overall performance.

Facing the above challenges on conventional general pro-
cessors and inspired by the great success of domain-specific
accelerators for graph processing [16] and neural networks
[9, 21], we propose the concept of GCN accelerator and im-
plement it using a hybrid architecture. We design HyGCN
with two efficient processing engines, i.e. Aggregation En-
gine and Combination Engine, to accelerate the Aggregation
and Combination phases, respectively. The Aggregation En-
gine provides an efficient data-aware scheduling to perform
the dynamic computation and irregular access; while the
Combination Engine maximizes the parallelism and energy
efficiency to perform the regular but intensive MVMs. On
the basis of individual optimizations of these two phases with
different patterns, we further optimize the overall system via
the execution pipeline and memory access coordination.

Specifically, we divide our design into several steps. First,
we propose a programming model to enhance the system
programmability by abstracting GCNs as edge-centric aggre-
gation for the Aggregation phase and MVMs for the Combina-
tion phase. Second, we design and optimize the two process-
ing engines. We introduce a data-aware access scheduling to
address the irregularity in Aggregation Engine, and use effi-
cient systolic arrays to perform the intensive computations in
Combination Engine. Third, we propose mechanisms of fine-
grained pipeline and memory access coordination to improve
the overall execution and off-chip data access, efficiently.
To summarize, we list our contributions as follows:
• We quantitatively characterize the GCN performance on

the conventional general-purpose processor, and then iden-
tify the different execution patterns of the Aggregation
phase and Combination phase.

• We propose a programming model for GCNs and design
an accelerator, HyGCN, using a hybrid architecture with
Aggregation Engine and Combination Engine. In the for-
mer engine, we introduce a data-aware scheduling to opti-
mize the irregular memory access; in the latter engine, we
use multigranular systolic arrays to perform the intensive
MVMs efficiently.

• We coordinate the two engines and optimize the overall
performance by proposing flexible inter-engine pipelines
and an efficient memory access coordination.

• We implement our architecture design in RTL and evalu-
ate it using a detailed microarchitectural simulation. We
use four well-known GCN models on five popular graph
datasets. Compared with the state-of-the-art PyTorch Geo-
metric [14] running on Intel Xeon CPU, our work achieves
three orders of magnitude speedup and three orders of
magnitude less energy on average.

2. KNOWLEDGE OF GRAPH CONVOLU-
TIONAL NETWORKS

GCNs follow a neighborhood aggregation scheme, where
the feature vector of each vertex is computed by recursively
aggregating and transforming the representation vectors of its
neighbor vertices [18, 34, 41]. Fig. 1 illustrates the execution
phases of GCN models. After k iterations of aggregation via
the Aggregate function and transformation via the Combine
functions, a vertex is represented by its final feature vector,
which captures the structural information within the vertex’s
k-hop neighborhood. Table 1 further gives the notations used
in GCNs. In this work, we mainly focus on undirected graphs
and the inference stage rather than training.

Table 1: Notations of GCNs.
Notation Meaning Notation Meaning

G graph G = (V,E) V vertices of G
E edges of G Dv degree of vertex v

e(i, j) edge between vertex i and j N(v) (S(v)) (sampling subset of) v’ neighbor set
A (Ai j) (element of) adjacent matrix av aggregation feature vector of v

hG feature vector of G W combination weight matrices
hv feature vector of vertex v b combination bias vectors
X initialized feature matrix Z embedding matrix
C assignment matrix ε learnable parameter

Typically, the k-th layer/iteration of GCNs is formulated as
ak

v = Aggregate
(

h(k−1)
u : u ∈ {N(v)}∪{v}

)
,

hk
v = Combine

(
ak

v

)
.

(1)

where hk
v is the representation feature vector of vertex v at

the k-th iteration. Simply, the Aggregate function aggregates
multiple feature vectors from source neighbors to one single
feature vector, and the Combine function transforms the
feature vector of each vertex to another feature vector using
an MLP neural network. Note that the MLP parameters,
including weights and biases, are shared between vertices.

In order to decrease the computational complexity, the
Sample function is usually applied before the Aggregate
function to sample a subset from the neighbor vertices of
each vertex [7, 18] as the new neighbors, specifically,

S(v) = Samplek
(

N(v)
)
. (2)

Sometimes, the Pool function [38] is inserted after the Com-
bination function to transform the original graph into a
smaller graph.

After several iterations, the graph features will be used for
final prediction or classification. For the node classification
problem, vertex feature vectors hk

v at the last iteration are used
for prediction. For the graph classification problem, a Read-
out function further aggregates the hk

v at the last iteration to
obtain the entire graph’s representation vector, i.e.

hG = Readout
(

hk
v | v ∈ G

)
. (3)

Next, we provide several typical GCN models as examples
to explain the above operations in detail. Specifically:

GCN is one of the most successful convolutional networks
for graph learning [24, 33], which bridges the gap between
spectral-based convolutions and spatial-based convolutions.
Its inference model can be described as

ak
v =

(
∑

1√
Dv ·Du

h(k−1)
u | ∀u ∈ {N(v)}∪{v}

)
,

hk
v = ReLU(W kak

v +bk).

(4)

2



A

H

D

C

E
G

B

D

C

G

Sample Aggregate Combine

A
G

E

F B
F

H

A

G

D

C

E
G

F B

Input Graph

Shared
Parameters

(Wk, Bk)

A

H

Feature Vector

A

H

Iterative
ReadoutPool (Optional)

Σ or Concat

Figure 1: Illustration of the GCN model.
GraphSage further adopts uniform neighbor sampling to

alleviate receptive field expansion that effectively trades off
accuracy and execution time [18]. It is formulated as

ak
v = Mean

(
{h(k−1)

v }∪{h(k−1)
u ,∀u ∈ S(v)}

)
,

hk
v = ReLU(W kak

v +bk).
(5)

GINConv is a simple neural architecture, and its discrimi-
native power is equal to the power of the Weisfeiler-Lehman
graph isomorphism test [34]. Vertex features learned by GIN-
Conv can be directly used for tasks like node classification
and link prediction. We can perform this model as

ak
v = (1+ εk) ·h

(k−1)
v + ∑

u∈N(v)
h(k−1)

u ,

hk
v = MLPk(ak

v, W k, bk).

(6)

For graph classification tasks, the following Readout func-
tion is further used to produce the representation of the entire
graph by given representations of individual vertices. It con-
catenates across all iterations of GINConv to acquire the final
graph representation as

hG = Concat
(
(∑

v∈G
hk

v) | k = 1, ...,K
)
. (7)

DiffPool provides a general tool to realize hierarchical
graph-level transformation for a broad set of input graphs [38].
It can be inserted after the Combination function of any
GCNs to transform the original graph to a smaller one (like
the pooling layer in convolutional neural networks (CNNs)).
In fact, Diffpool uses two extra GCNs to implement the graph
transformation, which follows

C(k−1) = so f tmax(GCNk
pool(A

(k−1), X (k−1))),

Z(k−1) = GCNk
embedding(A

(k−1), X (k−1)),

Xk =C(k−1)T
Z(k−1), Ak =C(k−1)T

A(k−1)C(k−1),

(8)

where A is the adjacent matrix of the graph, X is the ma-
trix format of all feature vectors in the graph, C and Z are
two intermediate matrices termed as assignment matrix and
embedding matrix, respectively. After the DiffPool transfor-
mation, a new feature matrix Xk and adjacent matrix Ak are
produced, which can be combined to construct a new smaller
graph. Actually in the new graph, GCNk

pool determines the
number of vertices, and GCNk

embedding determines the length
of vertex feature vector.

Summary. In the above paragraphs, we introduce several
typical operations in GCNs: Sampling, Aggregation, Com-
bination, Pooling, and Readout. These operations can be
divided into two categories depending on whether it involves
graph processing or not. The graph structure-dependent op-

erations include Sampling, Aggregation, Pooling, and Read-
out, while Combination is graph independent. Sampling is
used to sample a subset from neighbors, which can be done
during preprocessing [20] or with random selection during
run-time [18]. Aggregation aggregates the features from the
1-hop neighbors, and Combination usually is a typical MLP
neural network (single layer or multiple layers). Pooling acts
like the pooling layer in CNNs to realize graph transforma-
tion by reducing the number of vertices and the length of
feature vectors. Readout can be a simple summation [14]
across vertices or further with a concatenation across itera-
tions [34]. Therefore, Readout can be viewed as an extreme
Aggregation. In terms of the complexity, Aggregation and
Combination are two major phases in GCNs, which is the
design focus in our work.

3. CHARACTERIZATION & MOTIVATION

3.1 Characterization on General Processor
In order to identify the bottleneck when performing GCNs,

we conduct quantitative characterizations using GCN [24]
model and COLLAB [22] dataset. The programming tool is
PyTorch Geometric(PyG) [14], and the execution platform is
Intel Xeon CPU. Table 2 presents the profiling results which
will be discussed from both the memory and compute aspects.

Table 2: Quantitative Characterization on CPU.
Aggregation Combination

DRAM Byte per Ops 11.6 0.06
DRAM Access Energy per Ops 170nJ 0.5nJ

L2 Cache MPKI 11 1.5
L3 Cache MPKI 10 0.9

Number of Threads 1 24
Ratio of Synchronization Time — 36%

Memory Access and Cache Utilization. From the first two
rows of Table 2, it is observed that each operation in the
Aggregation phase requires much more data to be accessed
from DRAM, resulting in higher DRAM access energy. The
underlying reason for such DRAM-dominant phenomenon
is due to low cache utilization and ineffectual accesses. On
one hand, the misses per kilo-instruction (MPKI) for L2 and
L3 caches in the the Aggregation phase are higher than 10
that is very high. This is caused by the high randomness
and poor locality of neighbor indices for each vertex. Thus,
most accesses jump down to DRAM with more cost. On the
other hand, the indirect and irregular accesses make the data
prefetching in the Aggregation phase blind, since it is difficult
to predict the data addresses without knowing the indices of
neighbors in advance. This results in abundant ineffectual
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memory accesses to prefetch data. Besides, the complex mes-
saging mechanism for graph Aggregation usually produces
many intermediate data, which also increases the number of
invalid accesses. Overall, these results are consistent with the
model behaviors: the Aggregation phase performs dynamic
and irregular execution pattern while the Combination phase
is static and regular.
Parallelism Exploitation. Due to the severe irregularity of
Aggregation phase, CPU usually uses only single thread to
process the computations. Otherwise, the use of multi-threads
will suffer from heavy overheads for frequent thread creation
and imbalanced workloads, leading to even lower perfor-
mance than single thread. In contrast, the Combination phase
can be parallelized using multi-threads due to the more regu-
lar execution pattern. Nevertheless, since the parameters are
greatly shared between vertices, we observe abundant waits
for data copy and synchronization between threads. Besides,
although the OoO technique is widely used in modern high-
performance processors to enhance the parallelism, it fails in
the scenario of GCNs. The Aggregation phase is too irregular
and dynamic, and the computations are frequently bounded
by indirect memory accesses, which invalidates the powerful
OoO. Distinct from the Aggregation phase, the execution
pattern of Combination phase is too regular and deterministic,
which eliminates the need for OoO.

3.2 Need for GCN Accelerator
Given the above characterizations, we observe huge chal-

lenges when performing GCNs on conventional general-purpose
processors. In this subsection, we explain the motivation of
designing a GCN accelerator.

Table 3: Different execution pattern of Aggregation
phase and Combination phase.

Aggregation Combination

Access Pattern Indirect & Irregular Direct & Regular
Data Reusability Low High

Computation Pattern Dynamic & Irregular Static & Regular
Computation Intensity Low High

Execution Bound Memory Compute

Variable Design Requirement. We summarize the execu-
tion patterns of the two GCN phases in Table 3, according
to the profiling results in Table 2. The Aggregation phase
demands more efforts to orchestrate the memory access that
bounds the overall performance. Differently, the Combina-
tion phase needs more attention to improve the intense com-
putations with better parallelism and faster synchronization.
Facing such opposed design requirements, it is even chal-
lenging to achieve high performance in a single specialized
system, let alone on the bloated general-purpose processors.
Lack of Inter-phase Optimization. The conventional pro-
cessors equipped with current programming framework for
GCNs usually adopt coarse-grained set of functions and in-
structions, which results in phase-by-phase execution. This
serialization compromises the design space with phase in-
teraction, hindering the further performance improvement
beyond the individual optimization for each phase.
Opportunities for Customization. Designing a specialized
accelerator for a specific application domain is an efficient
and prevalent solution to address the inefficiency on tradi-

tional architectures, since it can tailor the computation unit
and memory hierarchy to adapt with the special type of work-
load. Here in the context of our work, we can build the
accelerator with a hybrid architecture using different opti-
mizations for the two phases. For the Aggregation phase, it
is possible to obtain the knowledge of graph data in advance
and then schedule the accesses towards higher rate of data
reuse and less redundant accesses; for the Combination phase,
we draw inspirations from current neural network acceler-
ators to efficiently perform MVMs with parameter sharing.
Beyond the individual optimizations, the off-chip memory
accesses from the two phases is controllable to improve the
overall memory efficiency. Without the restrictions on gen-
eral processors, now the serial inter-phase dataflow can be
pipelined in fine grain. Putting all these together, there are
huge opportunities to design an efficient GCN acceleration
with high performance.

4. ARCHITECTURE DESIGN
In this section, we design HyGCN to support the efficient

execution of GCNs. We will introduce the programming
model first, and then give details of the architecture design.

4.1 Edge- and MVM-Centric PM
The goal of building a programming model (PM) is to

achieve the hardware transparency for programmers without
compromising the execution performance [41]. For Aggrega-
tion, there are gather- and scatter-based processing methods.
Since the scatter-based method usually produces large amount
of atomic operations and requires a synchronization after all
the computation of all vertices, the degree of parallelism will
be degraded. On the contrary, the gather-based method can
control the program behavior easily and preserve the exe-
cution parallelism. Therefore, we select the gather-based
processing in our design. Nevertheless, this processing mode
will lead to intensive memory access and vertex computa-
tion. To address this problem, we employ an edge-centric
PM to exploit the edge-level parallelism. In this way, the
workload for each vertex can be divided into subworkloads
and assigned to each computation unit for parallel processing.
For Combination, the situation is relatively easier. Since the
computation of each vertex acts like the MLP neural network,
we directly focus on the MVM operations.

Our edge- and MVM-centric PM for GCNs is shown in
Algorithm 1. At each vertex v ∈ V , the sampled neighbor
indices are first read, which is a subset of all neighbors. Each
index corresponds to an edge connecting v and a neighbor ver-
tex u, i.e. e(u, v). By traversing all sampled edges connected
v, all the feature vectors of corresponding neighbors can be
aggregated onto the feature vector of v. Then, a Combine
function can start performing the Combination phase that is
comprised of a series of MVMs. In this PM, the edge-level
and MVM-level parallelism can be exploited.

Note that in Algorithm 1 we do not express the Pool
and Readout operations explicitly since they are not always
needed. In fact, the Pool operation can be represented by
two GCNs and additional matrix operations. The GCNs can
be performed by the entire two engines, the matrix trans-
poses can be done by the flexible Aggregation engine, and
the matrix multiplications can be executed by the Combina-
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tion engine. The Readout operation can be expressed by an
additional single vertex that connects all vertices in the graph,
which can be accomplished by the Aggregation engine.

Algorithm 1: Edge- and MVM-centric Programming
Model for Aggregation and Combination Phase

1 initial SampleNum;
2 initial SampleIndexArray;
3 for each node v ∈ V do
4 agg_res← init();

/ Edge-centric Parallelism
5 sample_idxs← SampleIndexArray[v.nid];
6 for each sample_idx in sample_idxs do
7 e(u,v)← EdgeArray[sample_idx];
8 agg_res← Aggregate(agg_res,u. f eature);
9 end

/ MVM-centric Parallelism
10 v. f eature← Combine(agg_res,weights,biases);
11 end

4.2 Architecture Overview
Based on the proposed PM, Figure 2 depicts the architec-

ture of HyGCN. We construct the system using a hybrid ar-
chitecture, which includes two engines (Aggregation Engine
and Combination Engine) and one memory access handler.
A communication interface (Coordinator) is introduced to
bridge these two engines. Therefore, the interference between
them is mitigated and their execution pipeline is allowed.
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Figure 2: Architecture overview of HyGCN.
The Aggregation Engine aims to realize the efficient exe-

cution of random accesses and computations. To exploit the
edge-level parallelism, a task scheduler (eSched) is designed
to assign the edge processing workloads onto SIMD cores.
To support the sample operation, we introduce a Sampler into
the Aggregation Engine. The Sampler selects edges from
the edge list of each vertex using a uniform or pre-defined
distribution in terms of index interval. The former indices
for edge sampling are based on dynamical generation (see
Fig. 3(a)) while the latter ones are predefined and can be read
from off-chip memory like in [7, 20]. To reduce the latency
of data access, we employ embedded DRAM (eDRAM) to
cache various data for better rate of data reuse and locality.
An Edge Buffer is used to cache edges for the exploitation of
spatial locality in the edge array. An Input Buffer is used to
cache the vertex features in Xk−1 and an Aggregation Buffer
is used to cache the intermediate aggregation results, to ex-
ploit the temporal locality. To hide the off-chip latency, both

the Edge Buffer and Input Buffer adopt the double buffer
technique. Specifically, we design a Sparsity Eliminator to
avoid redundant feature loads of the neighbor vertices that do
not connect to the aggregating vertex.
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Figure 3: Illustration of (a) Sampler and (b) Prefetcher.

The Combination Engine is designed to maximize the ef-
ficiency of regular accesses and computations. In order to
improve the processing parallelism and data reuse, we adopt
the well-known systolic array design [21] and modify it to
be compatible with GCNs. A Weight Buffer is used to cache
the weight matrix to exploit their temporal locality, and an
Output Buffer is used to coalesce the write accesses of the
finally features. Similarly, they also leverage the double
buffer technique to hide off-chip access latency. The Com-
bination engine takes the aggregation result of each vertex
v from the Aggregation engine and the weight matrix from
the Weight Buffer as inputs to execute the MVM operation.
The vSched is responsible for the workload assignment. After
the MVM operations, an activation operation is performed
by Activate Unit to produce the new feature vector of vertex
v. Different from normal systolic array, our systolic array is
multi-granular that can be used as multiple smaller arrays or
a whole large array under different optimization scenarios.

To improve the bandwidth utilization, we add a Prefetcher
to explicitly prefetch graph data and weight data. For ex-
ample, Fig. 3(b) illustrates the feature vector prefetching.
Prefetcher can not only use the sampled edge indices from
Sampler to prefetch the requested edges, but also prefetch the
entire edge array. After receiving the prefetched edge e(u,v),
the neighbor vertex index can be used to prefetch the feature
vector of that vertex immediately.

4.3 Aggregation Engine
To optimize the computation of Aggregation, we introduce

a vertex-disperse processing mode to reduce vertex latency
and alleviate workload imbalance. To optimize the memory
access, we employ a static graph partition method to enhance
data reuse and a dynamic sparsity elimination technique to
reduce data accesses.

4.3.1 Execution Mode
As shown in Fig. 4, the compute units in SIMD cores

process edges in parallel. Usually, there are two processing
modes. The first one is vertex-concentrated, where the work-
loads of each vertex are assigned to a single SIMD core. This
mode can produce the aggregated features of vertices in a
burst way, i.e. periodically processing a group of vertices.
However, the processing latency of a single vertex is long,
and the fast vertices have to wait for the slow vertices leading
to workload imbalance. Therefore, we use the second one
shown in Fig. 4 which assigns the workloads of each vertex
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to all SIMD cores, termed as vertex-disperse mode. Although
the total workloads do not change, the vertex-disperse mode
generates the aggregated features vertex by vertex with low
latency and less workload imbalance between SIMD cores,
which enables the immediate processing of each vertex in the
following Combination Engine.
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Figure 4: Vertex-disperse processing mode where the
workloads of each vertex are assigned to all SIMD cores.

4.3.2 Graph Partition (Static)
We borrow the abstraction of vertex interval and edge shard

from [10,25] to partition graph data, which is the basis of our
data-aware sparsity elimination in the next subsection. We do
not need explicit preprocessing to generate the intervals and
shards since we directly take the data format of compressed
sparse column (CSC) as input. As exampled in Fig. 5(a), the
16 vertices are organized as several intervals (i.e. from I1 to
I4, each with four vertices), and the edges are organized as
4×4 shards (i.e. from S(1,1) to S(4,1), each with 16 edges
at most). The intervals and shards are disjoint.

Algorithm 2: Interval-wise Aggregation
1 for each interval Ii in Xk do
2 agg_res← init();
3 for each interval I j in X (k−1) do
4 agg_res← Aggregation(I j,agg_res);
5 end
6 Ii← Combination(agg_res);
7 end

The feature vector length of each vertex is usually large so
that to exploit the locality of feature is critical. We group the
vertices within the same interval together (e.g. Ii) and then
process the aggregation of their source neighbors also interval
by interval (i.e. traverse I j), as expressed in Algorithm 2.
Based on this flow, the feature accesses of all vertices in an
interval are merged (see Fig. 5(b)). The resulting benefits
are twofold. First, the vertices in Ii usually have overlapped
neighbors in I j, therefore, the loaded feature data of I j can be
reused when performing feature aggregation. Second, when
traversing all I j, the intermediate aggregated results of Ii are
remained in buffer which can also be reused when performing
feature update. In practice, each edge shard is usually not
square as our simplified illustration in Fig. 5. The shard
height is determined by the capacity of Input Buffer, while
the shard width is determined by the capacity of Aggregation
Buffer. The Edge Buffer size affects both height and width
since it accommodates all edges of each shard.

4.3.3 Data-aware Sparsity Elimination (Dynamic)
With the data reuse optimization, we further attempt to

reduce the redundant accesses since the graph connections
are sparsely distributed. To eliminate the sparsity, we propose
a window-based sliding and shrinking approach. The key idea
is that we first slide the window (with the same size of an
edge shard) downward until an edge appears in the top row,
and then we shrink the window size by moving the bottom
row upward until an edge is met.
Window Sliding. Fig. 5(c) illustrates the window sliding
process. For each vertex interval, the top shard window grad-
ually slides downward. It will not stop until an edge appears
on its top row. Then a new window with the same size is
created, whose top row follows the bottom row of its previous
window. The stop criterion is the same for every window. In
this way, windows continuously arise, slide downward, and
stop. All the positions where windows stop are recorded as
effectual shards.
Window Shrinking. Although the window sliding can cap-
ture most effectual edges, sparsity still exists on the bottom
side (within the purple dashed boxes). This is because the
above sliding direction is downward. To reduce this part of
sparsity, we propose window shrinking here. Specifically, the
bottom row of each recorded window moves upward until it
meets an edge, and then the window is shrinked. Fig. 5(d)
illustrates the sliding and shrinking process of one window in
detail and gives the final recorded effectual shards. Different
from previous partition, the sizes of final shards are usually
different due to the window shrinking.

Algorithm 3: Interval-wise Aggregation with Sparsity
Elimination

1 for each interval Ii in Xk do
2 row_pos← 1;
3 agg_res← init();
4 do
5 (I j,row_pos)←

GetOneEffectInterval( X (k−1),A, Ii,row_pos);
6 agg_res← Aggregation(I j,agg_res);
7 while (I j != ∅);
8 Ii← Combination(agg_res);
9 end

Algorithm 4: GetOneEffectInterval (Get One Effectual
Neighbor Interval)

/ Window Sliding
1 while (edge(row_pos,v) ==∅ f or ∀v ∈ Ii) do
2 row_pos← row_pos+1;
3 end
4 winstart ← row_pos;
5 winend ← row_pos+Windowheight −1;
6 row_pos← winend +1;

/ Window Shrinking
7 while (edge(winend ,v) ==∅ f or ∀v ∈ Ii) do
8 winend ← winend−1;
9 end

10 Ie f f ectual ← X (k−1)[winstart : winend ];
11 return Ie f f ectual ;

Given the effectual shards after sparsity elimination, the
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Figure 5: Static graph partition for data reuse and dynamic sparsity elimination to reduce redundant accesses: (a)
interval-shard partition; (b) interval-wise feature access; (c) window sliding; (d) window shrinking.

execution flow of Aggregation follows Algorithm 3. The
only difference from Algorithm 2 is that the each neighbor
interval I j is dynamically determined by window sliding and
shrinking (see Algorithm 4). The starting row of each neigh-
bor interval varies due to sliding and the interval length in
the row dimension also varies due to shrinking. In this way,
only the feature data of remained neighbor vertices when
performing the aggregation operation for each interval Ii are
loaded, which eliminates plenty of redundant accesses.

4.3.4 Difference from Graph Analytics
The feature data in traditional graph analytics are small,

usually one element for each vertex. By contrast, the feature
of each vertex in GCNs is a vector with even thousands of el-
ements. Thus, the feature data reuse from graph partition and
redundant access reduction from sparsity elimination are con-
siderable. When the sample operation is used in GCNs, the
sparsity will be increased much since only sampled neighbors
are required during Aggregation.

4.4 Combination Engine
The Combination operation at each vertex acts like a neural

network, the execution of which is regular but intense. Our
design is based on the well-known systolic array. In order
to adapt it for the two processing modes of Aggregation
Engine (see Fig. 4), we integrate multiple arrays rather than
a single one, as shown in Fig. 6(a). A group of systolic
arrays is assembled to form a systolic module. We allow a
multigranular use of these systolic modules, including the
independent working mode and cooperative working mode.
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Figure 6: Combination Engine design: (a) multiple sys-
tolic modules; (b) different dataflow patterns.

4.4.1 Independent Working Mode
In this mode, the systolic modules work independently

from each other. Each of them processes the MVM opera-
tions of a small group of vertices, as illustrated in Fig. 7(a).
The weight parameters for each module in this case are di-

rectly accessed from the Weight Buffer and just reused within
module, as depicted in Fig. 6(b). The advantage of this mode
is the lower vertex latency because we can process the combi-
nation operations of this small group of vertices immediately
once their aggregated features are ready, without waiting for
more vertices. The independent mode matches well with the
vertex-disperse processing mode of Aggregation Engine in
Fig. 4, where the aggregated features are produced quickly
but sequentially.
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Figure 7: Different use of the systolic arrays: (a) inde-
pendent working mode; (b) cooperative working mode.

4.4.2 Cooperative Working Mode
Besides working separately, these systolic modules can be

further assembled together to simultaneously process more
vertices, as shown in Fig. 7(b). Different from the immediate
processing of vertices, this mode requires to assemble the ag-
gregated features of a large group of vertices together before
performing their combination operations. The advantage is
that, the weight parameters can flow from the Weight Buffer
to the downstream systolic modules and then gradually to the
upstream ones (see Fig. 6(b)), which are greatly reused by all
systolic arrays. This helps reduce the energy consumption.

4.4.3 Difference from Neural Networks
In neural networks especially MLP, the weights cannot be

shared without batching technique. By contrast, the weights
are fully shared by different vertices in GCNs. No matter
which working mode is selected in the Combination Engine,
the weights can be reused in Weight Buffer when processing
different vertices. In addition, the multigranular systolic
array design is also special in our architecture in order to
accommodate different application needs.

4.5 Inter-Engine Optimization
In this subsection, we orchestrate the execution pipeline

and DRAM access of Aggregation engine and Combination
engine, by the Coordinator module shown in Fig. 2.
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4.5.1 Latency- or Energy-aware Pipeline
Ping-pong Aggregation Buffer. To reuse the aggregation
results produced by the Aggregation engine, we add an Ag-
gregation Buffer between the two engines. This buffer can
be written by the Aggregation Engine and can be read by
the Combination Engine. Before the final aggregated results
are generated, the Aggregation Buffer stores the partial re-
sults that will be read by the Aggregation Engine for feature
accumulation. In order to increase the parallelism of these
two engines, we implement a ping-pong buffering mecha-
nism where the Aggregation Buffer is split into two chunks.
In this way, the executions of aggregation and combination
are decoupled, which enables an inter-engine pipeline. To
accommodate the needs of different applications, we pro-
vide two fashions of pipeline: latency-aware pipeline and
energy-aware pipeline.
Latency-aware Pipeline. In this pipeline mode, the Com-
bination Engine works in the systolic module independent
mode. The aggregated features are produced vertex by vertex
in the Aggregation Engine, and the following combination
will be processed immediately once the aggregated features
of a small group of vertices are ready. Therefore, the average
processing latency for each vertex can be lower. The overall
timing is illustrated in Fig. 8(a), where V denotes the vertices
for aggregation, and I represents the neighbor intervals.
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Figure 8: Timing illustration of different pipeline modes:
(a) latency-aware pipeline; (b) energy-aware pipeline.

Energy-aware Pipeline. By contrast with the latency-aware
pipeline, the energy-aware pipeline here uses the systolic
module cooperative mode in the Combination Engine. The
vertex-by-vertex processing changes to a burst fashion, where
a large group of vertices will be processed together every time.
Although the vertex latency is longer, the energy consumption
can be reduced due to the weight propagation in the merged
systolic arrays without redundant accesses. Fig. 8(b) presents
its timing sequence.

4.5.2 Coordination of Off-chip Memory Access
It is hard to determine the memory bandwidth ratio be-

tween the two engines since the practical workloads usually
vary between Aggregation and Combination. Moreover, the
separation of memory systems will increase the configuration
overheads and cause bandwidth waste. This is the reason
why we use only one off-chip memory. Both the two en-
gines access this memory at runtime, which causes a frequent
switching of access locations, leading to inefficiencies.

Fig. 9 shows our solution. In total, there are four buffers
(Edge Buffer & Input Buffer in Aggregation Engine, and
Weight Buffer & Output Buffer in Combination Engine) that
will be used for accessing the off-chip memory. Due to the
interval processing and pipeline mechanism, these accesses
usually come concurrently as shown in Fig. 9(a). If we se-

Edges Input Features Weights Output Features

Request Issue 

Time

 Time

 Data in DRAM Row Buffer

 Time

Request Issue 

(a) 

(b) 

 Data in DRAM Row Buffer

 Time

Figure 9: Coordination of off-chip memory access.

quentially handle these access requests, the discontinuous
addresses greatly degrade the utilization of row buffer within
DRAM. To solve this problem, we predefine an access prior-
ity (edges > input f eatures > weights > out put f eatures) to
assemble the discontinuous requests shown in Fig. 9(b). The
concern to use this priority is based on the access sequence
when processing a vertex. With the improved continuity, the
utilization of row buffer can be significantly enhanced. Then,
we remap these reordered addresses to index the channel and
bank using low bits. In this way, the memory channel- and
bank-level parallelism can be further exploited.

5. EVALUATION RESULTS
We first describe our experimental setup in Section 5.1.

Then, to demonstrate the advantages of our design, we com-
pare HyGCN to the state-of-the-art software framework Py-
Torch Geometric(PyG) in Section 5.2. Next, we give the
detail analysis of our optimization techniques in Section 5.3.
Finally, we present a scalability exploration to show the trade-
off of our architecture in Section 5.4.

5.1 Experimental Setup
Methodology. The performance and energy of HyGCN are
measured by using the following tools.

Architecture Simulator. We design and implement a cus-
tomized cycle-accurate simulator to measure execution time
in number of cycles. This simulator models the microarchi-
tectural behaviors of each module in our architecture design.
In addition, we implement a detailed cycle-accurate scratch-
pad memory model. It is integrated with Ramulator [23] to
simulate the behaviors of memory accesses to DDR4.

CAD Tools. For the measurements of area, power, and
critical path delay (in cycles) for each module, we implement
each module with Verilog, and then synthesize them. We
use the Synopsys Design Compiler with the TSMC 12 nm
standard VT library for the synthesis, and estimate the power
using Synopsys PrimeTime PX. The slowest module has a
critical path delay of 0.9 ns including the setup and hold time,
putting the HyGCN comfortably at 1 GHz clock frequency.

eDRAM Measurements. The area, power, and access la-
tency of the on-chip scratchpad memory are estimated using
Cacti 6.5 [1]. Since Cacti only supports down to 32 nm tech-
nologies, we apply four different scaling factors to convert
them to 12 nm technology as shown in [29, 32].

Table 4: System configurations.
HyGCN CPU (PyG)

Compute
Unit

1 GHz @ 32 SIMD16 cores and
8 systolic modules (each with 4×128 arrays)

2.5 GHz
@ 24 cores

On-chip
Memory

128 KB (Input), 2 MB (Edge), 2 MB (Weight),
4 MB (Output) and 16 MB (Aggregation)

128 KB L1, 512 KB
L2, and 60 MB L3

Off-chip
Memory

136.5 GB/s
(8 channels 2133 MHz DDR4)
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Figure 10: Comparison to PyG. (a) speedup, (b) energy, (c) bandwidth utilization, and (d) DRAM access.

Baseline Platform. To compare the performance and energy
efficiency of HyGCN with state-of-the-art works, we eval-
uate PyTorch Geometric(PyG) [14] in a Linux workstation
equipped with two Intel Xeon E5-2680 v3 CPUs, 400 GB
DDR4, and 136.5 GB/s memory bandwidth. Table 4 shows
the system configurations for above implementations.

Table 5: Datasets information [22, 36].
Dataset #Graph #Vertex Feature Len. #Edge

Cora (CR) 1 2,708 1,433 5,429
Citeseer (CS) 1 3,327 3,703 4,732
Pubmed (PB) 1 19,717 500 44,338

Dataset #Graph Avg. #Vertex Feature Len. Avg. #Edge
IMDB-BIN (IB) 1000 19.8 136 96.53
COLLAB (CL) 5,000 74.49 492 2,457.78

Table 6: Configuration of convolution layers. Here |ak
v|

denotes the length of feature vector ak
v.

#Sampling Neighbors Aggregation & Combination (MLP)

GCN (GCN) — Add & |ak
v |–128

GraphSage (GSC) 25 Mean & |ak
v |–128

GINConv (GIN) — Add & |ak
v |–128–128

DiffPool (DFP) GCNpool GCNembedding

Mean & |ak
v |–128 Mean & |ak

v |–128

Benchmark Graph Datasets and GCNs. Table 5 and Table
6 provide the information of the benchmark graph datasets
and GCN models used in our evaluation. On CPU, the
datasets with more than one graphs are tested by assembling
randomly selected 128 graphs into a large graph before pro-
cessing for GCN, GSC, and GIN or batching the same number
of graphs for DFP. On HyGCN, the testing fashions remain
the same with CPU except that the selected graphs for DFP
are processed one by one rather than in a batching way. The
latency is the execution time of a single graph on CR, CS,
and PB or the assembled or batched graphs on other datasets.

5.2 Overall Results
In this section, we compare our work (HyGCN) with PyG

on CPU in terms of speedup, energy consumption, utilization
of DRAM bandwidth, and DRAM access. Besides, we show
the area and power of our design.

5.2.1 Comparison to Software Framework
• Speedup. As shown in Fig. 10(a), HyGCN achieves 21∼12000×
speedup compared with PyG on CPU. The performance im-
provement comes from the individual optimizations in Aggre-
gation Engine & Combination Engine, and the inter-engine
pipeline & coordination. First, the parallel processing in
SIMD cores and systolic arrays make the computations fast.
Second, the graph partition and sparsity elimination increase
the feature reuse and decrease redundant accesses in Aggre-
gation Engine, which save the DRAM bandwidth. Third, the
weight parameters are well reused in Combination Engine,
which also helps to better utilize the bandwidth. At last, the
inter-engine pipeline further optimizes the parallelism and the

off-chip memory access coordination improves the DRAM
access efficiency.

While for PyG on CPU, abundant DRAM accesses and
synchronization overheads lead to performance degradation.
Specifically, the high randomness of neighbor indices results
in poor locality, causing many DRAM accesses. Besides,
the complicated messaging mechanism for graph aggrega-
tion usually produces many intermediate data that occupy
extra DRAM bandwidth. From the perspective of computa-
tion, PyG performs GCNs in a coarse-grained fashion, which
significantly loses the parallelism and produces redundant op-
erations. The wait for data copy and synchronization between
threads further degrades the performance.

Next, we discuss the performance variation between datasets.
Since the CL dataset presents a high-degree distribution, we
can achieve higher speedup via higher ratio of data reuse. By
contrast, other datasets have higher sparsity than CL, thus
show lower ratio of data reuse. Although the sparsity elimina-
tion can remove many redundant accesses, these datasets are
still memory-bounded and their speedup is linearly correlated
to the utilization of memory bandwidth.

In term of models, GIN achieves better performance than
others. The underlying reason is that GIN executes the aggre-
gation first on PyG, which introduces abundant computations
and accesses since the feature vector size is a magnitude or-
der larger than that after the combination. By contrast, other
models execute the combination first, which greatly reduces
the feature length before performing the aggregation. This
difference causes the inefficient execution of GIN on CPU,
while our HyGCN can maintain the performance to a great ex-
tent thanks to the parallel processing and data reuse. For DFP,
it includes three matrix multiplications (see Equation (8)) that
can be efficiently executed on CPU. There, our speedup when
performing DFP is lower than running others.
• Energy Consumption. For CPU measurement, we use Intel
PCM [4] to capture the energy consumption of cores and the
DRAM controller. Note that our energy consumption does
not include the DRAM controller since it could be placed
off-die. As shown in Fig. 10(b), HyGCN consumes only
0.06%-0.0003% energy compared with PyG on CPU. Among
the architectural components, Combination Engine consumes
most of the energy due to the intensive computation of MVMs.
As aforementioned, GIN causes more computations and data
accesses when performing the aggregation, which introduces
extra energy consumption on PyG. Although HyGCN cannot
reduce these computations, the optimizations of data reuse,
sparsity elimination, and inter-engine pipeline can reduce
redundant accesses to these extra data.
• DRAM Bandwidth Utilization. As shown in Fig. 10(c),
HyGCN demonstrates 2∼150× improvement on the utiliza-
tion of DRAM bandwidth compared with PyG. The high
bandwidth utilization of HyGCN derives from the high-degree
parallelism. By contrast, PyG cannot sufficiently exploit the
bandwidth, since there is only one thread in most of time to
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Figure 11: Optimization analysis: i) effect of sparsity elimination on (a) latency, (b) DRAM
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pipeline modes.

reduce the heavy overheads of frequent thread creation. Our
consistent lower bandwidth on CL dataset is due to the higher
data reuse, which benefits from denser connections.
• DRAM Access. As shown in Fig. 10(d), although the 16
MB on-chip memory is much smaller than the 60 MB L3
cache on CPU, HyGCN accesses only 30% of off-chip data
compared with PyG on average. This benefits from our data
reuse optimizations, sparsity elimination, and the immediate
processing between two engines. On CL dataset for GCN,
GSC, and GIN, multiple graphs are assembled to form a
larger one before being processed, which results in intensive
sparsity. HyGCN can efficiently eliminate the sparsity via
window sliding and shrinking, thus avoid unnecessary data ac-
cesses. Whereas, PyG is not aware of the sparsity, producing
abundant accesses that are introduced by blind prefetch.

5.2.2 Power and Area
For the computation precision, we use 32-bit fixed point

that is enough to maintain the accuracy of GCN inference.
We construct Aggregation Egine using adders and shifters
while construct Combination Engine using multiplier-and-
accumulators, adders, and comparators. For the on-chip
buffer, we use eDRAM to reduce both the area and energy
consumption. The total power and area of HyGCN are only
6.7 W and 7.8 mm2, respectively.

Table 7 provides area and power breakdown in terms of
buffer, computation, and control. The computation resources
of two engines consume most of power (>64%) and area
(>44%) to perform the edge-centric aggregation and MVMs-
based combination. The Coordinator occupies ∼35% of the
total area since it has a large Aggregation Buffer. The control
overhead is small (only 1.2% power and <0.45% area) owing
to the simple implementations of eSched, Sampler, Sparsity
Eliminator, vSched, Coordinator, and Memory Handler.

Table 7: Layout characteristics of HyGCN (1 GHz, 6.7 W
and 7.8 mm2), implemented in TSMC 12 nm technology.

Module Component Power (%) Area (%)

Aggregation Engine
Buffer 2.37 5.41

Computation 3.85 1.43
Control 0.48 0.18

Combination Engine
Buffer 14.4 15.13

Computation 60.52 42.96
Control 0.31 0.07

Coordinator Buffer 17.66 34.64
Control 0.41 0.19

5.3 Optimization Analysis
In this subsection, we analyze the effect of our optimiza-

tion techniques including sparsity elimination, inter-engine
pipeline, and off-chip memory access coordination. The
benchmark model is GCN mentioned in Table 6 and the re-
sults are shown in Fig. 11-12.

5.3.1 Sparsity Elimination Optimization
We conduct an experiment to evaluate HyGCN with and

without sparsity elimination (SE v.s. N-SE). This experiment
runs only Aggregation Engine to avoid the interference of
other blocks. As depicted in Fig. 11(a), with the optimization
of sparsity elimination, HyGCN achieves 1.1∼3× speedup.
The performance improvement owes to the much less redun-
dant DRAM accesses, which is reflected in Fig. 11(b). As
shown in Fig. 11(c), the eliminated sparsity reaches 66% .

5.3.2 Inter-engine Pipeline Optimization
First, we measure the overall performance with and with-

out inter-engine pipeline optimization (PP v.s. N-PP). With
the pipeline optimization, the execution time of GCN is re-
duced by 27%-50%, as shown in Fig. 11(d). On one hand, the
Aggregation Engine and Combination Engine work in parallel
with inter-engine pipeline. On the other hand, the DRAM
accesses occupy most of the execution time (see Fig. 11(d)),
therefore the inter-engine pipeline helps improving the per-
formance by decreasing DRAM accesses of the intermediate
aggregation results between two engines. It is observed from
Fig. 11(e) that total DRAM accesses are significantly reduced
to only 50%-73% with this pipeline optimization.

Second, we compare the latency and energy of Combina-
tion Engine with energy-aware pipeline and latency-aware
pipeline (Epipe v.s. Lpipe). From Fig. 12(a), it is obvious
that the Lpipe reduces the average execution time for each
vertex by 3%-14% via the immediate processing without
waiting for the aggregation results of too many vertices. By
contrast, as shown in Fig. 12(b), the Epipe saves the energy
consumption by 8% via assembling a large group of vertices
to process together for reusing weight parameters aggres-
sively. In practice, the application requirement determines
the pipeline fashion.

5.3.3 Memory Coordination Optimization
To show the effect of the memory access coordination, we

present the execution latency and bandwidth utilization with
and without coordination (COO v.s. N-COO) in Fig. 11(f)
and Fig. 11(g), respectively. With the memory access coor-
dination for address continuity, the DRAM row buffers are
better utilized and the channel-/bank-level parallelism is bet-
ter exploited. In this way, it is able to save 72% of execution
time and increase 3.6× DRAM bandwidth on average.

5.4 Scalability Exploration

5.4.1 Sparsity Elimination with Sampling
The sample operation in GCNs is helpful to increase the

sparsity, thus has potential to enlarge the benefits produced
by sparsity elimination. In Fig. 13(a)-(c), we measure the
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Figure 13: Scalability exploration: i) sparsity elimination with different sampling factor affecting the (a) latency, (b)
DRAM access, and (c) sparsity reduction; ii) capacity of aggregation buffer affecting the (d) latency, (e) DRAM access,
and (f) sparsity reduction; iii) size of systolic module affecting the (g) latency and energy of Combination Engine.
performance when running GSC model with variable sam-
pling ratio. The number in horizontal axis is the sampling
factor, which indicates that only 1

sampling f actor edges of each
vertex are sampled to perform aggregation. It is observed
that the increasing sampling factor significantly improves the
latency by reducing the DRAM accesses owing to the higher
sparsity. Note that the sampling factor cannot be too high,
which might harm accuracy of the application.

5.4.2 Capacity of Aggregation Buffer
The size of the Aggregation Buffer will affect the latency,

amount of data accesses, and even the effect of sparsity elim-
ination. As the capacity of Aggregation Buffer increases
from 2 MB to 32 MB, the latency of running GCN model
is decreased as shown in Fig. 13(d). This can be explained
from two aspects: i) More intermediate aggregated feature
data can be cached in on-chip buffer, leading to larger shard
width when partitioning the graph and thus less execution
loops; ii) Larger shard means that the neighbor features can
be reused more often, leading to less DRAM accesses (see
Fig. 13(e)). However, larger shard also enlarges the window
size during the sparsity elimination, which results in higher
sparsity that cannot be eliminated (see Fig. 13(f)). Note that
in this experiment, the Edge Buffer should also increase with
the Aggregation Buffer to match the enlarged edge shard.

5.4.3 Size of Systolic Module
In this experiment, we fix the number of total systolic ar-

rays but change the size of each systolic module, and then
to measure the cost of Combination Engine. Different from
the systolic module with 4×128 systolic arrays in Table 4,
here we treat 1×128 systolic arrays as a basic systolic mod-
ule. Based on the initial 32 systolic modules, we gradually
increase the number of arrays in each systolic module, i.e. de-
creasing the number of systolic modules under the restriction
of fixed number of total systolic arrays. The latency-aware
pipeline technique and GCN model are used in this experi-
ment. It is observed that longer execution time is consumed
as the partition of systolic modules becomes more coarse-
grained as shown Fig. 13(g)(bar). This is caused by the longer
time to assemble a larger group of vertices to be processed to-
gether. Fortunately, the energy consumption can be reduced
as shown Fig. 13(g)(red line) because the weight parame-
ters are reused by more vertices within each larger systolic
module. We only present the average energy result of these
datasets for simplicity. In our architecture design, we set the

systolic module with size of 4×128 arrays to achieve a good
trade-off between the latency and energy costs.

6. RELATED WORK
GCN Software Frameworks. There are a plenty GCN soft-
ware frameworks presented to release the programming ef-
forts while achieve high performance in modern architec-
tures [2, 14, 27, 37, 41]. Unfortunately, the distinct pattern
of computation and access between the Aggregation phase
and Combination phase produces processing inefficiencies on
traditional platforms. GCNs call for specialized architecture
design and optimizations.
Accelerators for Graph Analytics and Neural Networks.
With the emerging of graph analytics and neural networks for
real-world applications, a lot of hardware architecture designs
are proposed to accelerate these workloads [8, 9, 16, 21, 29].
However, GCNs behave like not only the graph processing
(Aggregation phase) but also neural networks (Combination
phase), which require different design requirements. There-
fore, current specialized architectures cannot efficiently per-
form GCNs since they focus on only one side.

7. CONCLUSION
Recently, GCNs are widely adopted to analyze graph datasets

using neural networks, which mainly include two execution
phases: Aggregation phase and Combination phase. In this
work, we identify that the computation and access patterns
of these two phases are distinct, even almost opposed, which
requires inconsistent design requirements. To this end, we
propose the concept of GCN accelerator and implement it
using a hybrid architecture. First, we build Edge- and MVM-
centric programming models for the two phases respectively
to achieve hardware transparency. Then, we design HyGCN
architecture with efficient Aggregation Engine and Combina-
tion Engine to optimize the two execution phases correspond-
ingly. The latency- and energy-aware inter-engine pipelines
are orchestrated to improve the overall latency and energy
according to actual needs. The off-chip memory accesses
between the two engines are carefully coordinated to improve
the efficiency. At last, through extensive evaluation experi-
ments, HyGCN demonstrates significant improvements com-
pared with current software frameworks running on CPUs.
The analysis of optimization techniques and exploration of
design space are also provided to present our design insights.
Our work will stimulate more researches on specialized hard-
ware for increasingly important GCNs.
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